ForschungPublikationen
Detailansicht

Analysis of the temporal correlations of TLS range observations from plane fitting residuals

verfasst von
Gaël Kermarrec, Michael Lösler, Jens Hartmann
Abstract

Terrestrial laser scanners (TLS) record a large number of points within a short time. Temporal correlations between observations are unavoidable but often neglected in stochastic modelling. The main consequences are an overestimated precision of the point clouds and potential wrong test decisions when used for deformation analysis with rigorous statistical procedures. Regarding physical considerations, a fractional Gaussian noise, defined by a so-called Hurst exponent, or a combination of fractional Gaussian noises could be used to model the noise of range measurements from a sensor perspective; Temporal correlations are expected to have a long-range dependency due to the high recording rate of the TLS. Scanning settings and configurations can affect the global correlation parameters. These effects can be quantified from the residuals of a least-squares surface approximation from the TLS point cloud. Based on simulation results, real data correlation analysis from indoor and outdoor experiments can be better understood which makes the identification of the dominant correlating noise source possible. Our methodology combines two Hurst-estimators: the Whittle maximum likelihood and the generalised Hurst estimator; It paves the way for a simple and global model for describing the temporal noise of TLS range correlations, usable in point clouds analysis independently of the object under consideration.

Organisationseinheit(en)
Geodätisches Institut
QuantumFrontiers
Externe Organisation(en)
University of Applied Sciences Frankfurt am Main
Typ
Artikel
Journal
ISPRS Journal of Photogrammetry and Remote Sensing
Band
171
Seiten
119-132
Anzahl der Seiten
14
ISSN
0924-2716
Publikationsdatum
01.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik, Ingenieurwesen (sonstige), Angewandte Informatik, Computer in den Geowissenschaften
Elektronische Version(en)
https://doi.org/10.15488/11164 (Zugang: Offen)
https://doi.org/10.1016/j.isprsjprs.2020.10.012 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“