

Synchronization aspects of sensor and data fusion in a research multi-sensor-system

MCG 2016, Vichy, France 5th International Conference on Machine Control & Guidance October 5, 2016

Jens-André Paffenholz, Johannes Bureick, Dmitri Diener, Johannes Link Geodätisches Institut, Leibniz Universität Hannover

- What is common for multi-sensor-systems (MSS)?
 - Superior goal: Efficient data capturing of the environment
 - Object capturing sensors: w.l.o.g. laser scanner
 - Referencing sensors: 3D positioning and navigation sensors
 - Use benefits of each enlisted sensor
- What is essential for the MSS?
 - 1) Availability of a proper time reference for the acquired sensor data
 - 2) Mutual **spatial relation** of each enlisted sensor

Selected (laser scanner based) multi-sensor-systems in the research community

[ARTIS, research project@GIH, 2016]

Remark: Commercial MSS are in the portfolio of nearly each manufacturer of geodetic equipment, e.g. Leica, Riegl, Trimble

Paffenholz et al.

- The research multi-sensor-system
- Synchronization (temporal referencing)
 - Common time reference by means of radio communication and GPS time
- Spatial referencing (registration)
 - 6 dof calibration for a common spatial reference
- Data fusion
 - Kalman Filtering for trajectory estimation
- Conclusion & Outlook

The research multi-sensor-system (RMSS)

- Small-scale vehicle (LxWxH 74x25x25 cm)
- Accelerated by means of a stepper motor
- Driving autonomously on a rail in an indoor laboratory

RMSS – Referencing sensors

TinkerForge IMU Brick 2.0						
Acceleration, Magnetic, Angular Velocity Resolution	14 bit, 16 bit, 16 bit					
Heading, Roll, Pitch Resolution	0.0625° steps					
Quaternion Resolution	16 bit					
Sampling Rate	100 Hz					
Weight	12 g					
Current Consumption	415mW (83mA @5V)					

Absolute position information

 prisms tracked by a robotic total station or a laser tracker

[www.tinkerforge.com, 2016]

Paffenholz et al.

RMSS – Object capturing sensors

[www.robotshop.com, 2016]

[www.conrad.de, 2016]

Profile laser scanner Hokuyo UST-10LX					
Range	0.06 – 10 m				
Repeatability	30 mm				
Absolute uncertainty	40 mm				
Scan angle	270°				
Angle resolution	0.25°				
frequency	40 profiles/s				

Raspberry Pi camera module with wide- angle lens					
Resolution 5 MP (2592 x 1944 px.)					
Framerate 15 fps					
Field of view 122° x 89.5°					

RMSS – Control unit and coding

 Single-board computer of type Raspberry Pi (RPI) 2 Model B running Ubuntu 14.04 LTS (Trusty Tahr)

- Synchronization (temporal referencing)
 - Common time scale for different data sources
 - Latency time due to imperfect synchronization

- Problem with RPI
 - Drift of built-in clock
- Solution
 - External clock source
 - Radio communication DCF-77
 - GPS time

a)

b)

c)

Establishment of temporal reference Methods of synchronization sensor 1 measurement values sensor 2 Clock-controlled registration sensor 3 trigger time sensor 1 measurement values Event-driven registration sensor 2 sensor 3 trigger time sensor 1 measurement values **Event-based registration** sensor 2 sensor 3 trigger time

MCG2016 - October 5, 2016

External clock sources

Radio communication; DCF-77

۶_	Terminal - ubuntu@ubuntu: ~									•	_ 0	×		
File	Edit	View	Terminal	Tabs	He	lp								
ubunt	u@ubun remote	tu:~\$	ntpq -p refi	d	st	t	when	poll	reach	delay	offset	jitter		
*GENE SHM(SHM()	RIC(0) 0) 1)		.DCFa. .GPS. .PPS.		0 0 0	ι ι ι	49 - -	64 16 16	377 0 0	0.000 0.000 0.000	0.239 0.000 0.000	0.839 0.000 0.000		
ubunt	u@ubun	tu:~\$												

GPS time introduced via GPIO pins of RPI

	Terminal -	ubun	tu@u	bunt	u: ~			• - •
File Edit View	Terminal Tabs	Help						
ubuntu@ubuntu:~\$ remote	ntpq -p refid	st ť	when	poll] reach	delaý	offset	jitter
dns2.uni-hannov +SHM(0) *SHM(1) ubuntu@ubuntu:~\$	130.75.6.192 .GPS. .PPS.	2 u 0 l 0 l	63 13 12	64 16 16	1 7 17	6.471 0.000 0.000	4.219 171.782 4.845	0.001 5.187 0.799

Spatial referencing (registration)

- Definition of RMSS coordinate system (body frame, BF)
- Sensor coordinate systems
 - External tracking (prism)
 - IMU
 - Laser scanner

- System calibration to obtain the spatial reference
 - Pose: position and orientation estimation of individual sensors in BF

Spatial referencing (registration) Approach for pose estimation of laser scanner in BF

• Approach according to Strübing & Neumann (2013)

MCG2016 - October 5, 2016

Pose estimation of laser scanner in BF Functional relation (Gauß-Helmert model)

$$\begin{bmatrix} \mathbf{x}_{BF} \\ \mathbf{y}_{BF} \\ \mathbf{z}_{BF} \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + R_x(\omega)R_y(\varphi)R_z(\kappa) \begin{bmatrix} \mathbf{x}_{LS} \\ \mathbf{y}_{LS} \\ \mathbf{z}_{LS} \end{bmatrix}$$

$$\mathbf{w} = n_x \mathbf{x}_{BF} + n_y \mathbf{y}_{BF} + n_z \mathbf{z}_{BF} - \mathbf{d}$$

- Input:
 - Laser scanner measurements [x_{LS}, y_{LS}, z_{LS}] to the RG-planes as observations
 - Estimated plane parameters $[n_x, n_y, n_z, d]$ of the RG-planes measured with the reference sensor (here laser tracker)
- Output:
 - 6 dof: translations t_x , t_y , t_z and rotations ω , φ , κ of the laser scanner

Spatial referencing (registration) Reference geometry (plane) configuration

- All parameter sensitive for light changes in the measured data
- Tricky for translation across scanning plane (parameter x)

Spatial distribution of the planes

Selected view of plane configuration

Spatial referencing (registration) Results of pose estimation

Misclosure vector of the adjustment (w)

Numerical results for parameter

Parameter	x	$\sigma_{\widehat{\chi}}$
<i>x</i> [mm]	710.52	0.85
<i>y</i> [mm]	96.79	0.23
<i>z</i> [mm]	63.73	0.16
ω [gon]	-0.198	0.037
arphi [gon]	-1.798	0.086
<i>к</i> [gon]	+0.660	0.104

Data fusion of referencing sensors within a recursive state-space filter: Kalman filter

State vector: Position, Orientation and Velocity of the RMSS

Resulting 3d point cloud of RMSS of indoor laboratory situation

Colour scheme

- Z-value from blue to green
- Rail highlighted in red
- Deflected pixel area close to the rails in yellow

Conclusion & Outlook

- Conclusion
 - Synchronization of different sensor data
 - Spatial referencing: pose estimation of laser scanner
 - Data fusion within Kalman filter
- Outlook
 - Improvement of ROS-node implementation
 - In-depth analysis of stratum-0 time server implementation on RPI

Thank you for your attention.

Synchronization aspects of sensor and data fusion in a research multi-sensor-system

Dr.-Ing. Jens-André Paffenholz, Johannes Bureick, M.Sc., Dmitri Diener, B.Sc., Johannes Link, B.Eng. Geodätisches Institut, Leibniz Universität Hannover paffenholz@gih.uni-hannover.de | www.gih.uni-hannover.de